The response of weed and crop species to shading: Measurement and prediction from traits

Nathalie Colbach, F. Dugué, A. Gardarin*, F. Strbik, N. Munier-Jolain, D. Moreau

Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon *UMR Agronomie, INRA, AgroParisTech, Université Paris-Saclay, 78850 Thiverval-Grignon Nathalie.Colbach@inra.fr

Context & objectives

Context & objectives

Integrated weed management \rightarrow Crop choice = lever

Which crop traits drive weed control? Which crop traits reduce yield loss due to weeds?

Which weed traits drive yield loss?

Growth (biomass)

Effect of shading

The different steps

1. Measure the parameters that drive light competition in contrasting crop and weed species

2. Estimate the parameters from easily measured traits with functional relationships

3. Run virtual experiments

Which weed traits drive yield loss?

Colbach N, Moreau D, Dugué F, Gardarin A, Strbik F, Munier-Jolain N (submitted) The response of weed and crop species to shading. 1. How to predict their morphology and plasticity from species traits and ecological indexes? Eur J Agron

1. Garden plot experiments

16 families
33 weed species
26 crop species (10 cash, 16 cover)
(3 wheat varieties, 3 pea varieties, 2 field bean varieties)

Colbach N, Moreau D, Dugué F, Gardarin A, Strbik F, Munier-Jolain N (submitted) The response of weed and crop species to shading. 1. How to predict their morphology and plasticity from species traits and ecological indexes? Eur J Agron

1. Garden plot experiments

Measurements

Plant height and width Leaf area Leaf biomass Above-ground biomass Leaf area profile

5 stages

Colbach N, Moreau D, Dugué F, Gardarin A, Strbik F, Munier-Jolain N (submitted) T to predict their morphology and plasticity from species traits and ecological indexes?

Introduction – Material & methods – Experiments – Functional relationships – Simulations – Conclusion

10

6

Concept for shading response parameter

Results: Shading reponse strategies

Initial leaf area RGR SLA µ_SLA LBR μ _LBR HM b_HM μ _HM WM b WM μ_WM RLH b RLH RI H

Grow fast to occupy space

Increase light interception area with thinner larger leaves

Increase light interception area by increasing leaf biomass to the detriment of stem biomass

Reach light by increasing plant height

Avoid shade cast by neighbour by growing laterally

Reach light by moving leaf area toward the top

2. Functional relationships

Etiolating ability µ_HM

Colbach N, Moreau D, Dugué F, Gardarin A, Strbik F, iviumer-Jolain N (submitted) The response of weed and crop species to shading. 1. How to predict their morphology and plasticity from species traits and ecological indexes? Eur J Agron

3. Virtual experiments

Identify farmers' practices

272 cropping systems

7 regions

Surveys, Biovigilance, advisors, design...

Colbach N, Gardarin A, Moreau D (submitted) The response of weed and crop species to shading. 2. Which parameters explain weed impacts on crop production? Eur J Agron

3. Virtual experiments

Identify farmers' practices

272 cropping systems

7 regions

Surveys, Biovigilance, advisors, design...

Colbach et al (2006, 2010, 2014) Eur J Agron, Colbach et al (2007) Ecol Mod; Colbach et al. (2014) Soil Till Res; Weed Res; Colbach et al (2017) Ecol Indic; Gardarin et al. (2012) Ecol Mod; Munier-Jolain et al (2013) Ecol Mod, (2014) Field Crops Res; Mézière et al 2015 Ecol Indi

region

Potos-

3. Virtual experiments

Identify farmers' practices

272 cropping systems

7 regions

Surveys, Biovigilance, advisors, design...

Paris region Portos-

Virtual experiments

Scenario	Herbicide	Weeds		Vield less due
Reference	Farmers' practices	Regional flora		to crop:weed
Weed-free	Farmers' practices	None		competition
Simulation plan (20 years x 10 yeathar repatitions)				for light

Simulation plan (30 years x 10 weather repetitions)

Colbach N, Gardarin A, Moreau D (submitted) The response of weed and crop species to shading. 2. Which parameters explain weed impacts on crop production? Eur J Agron

The crops with the lowest yield loss

Yield loss due to crop:weed competition for light

Crop species		NI	Variation in	
1 1		IN	Yield loss	(100t/t)
Maize	ZEAMX	17342	-31.4	а
Oilseed rape	BRSNN	10452	-26.8	b
Sunflower	HELAN	3127	-1.7	d
Wheat	TRZAX cv Cézanne	18187	0.4	е
Triticale	TTLSS	655	0.5	е
Wheat	TRZAX cv Orvantis	3939	0.9	е
Soybean	GLXMA	689	4.3	f
Реа	PIBSX cv Enduro	446	7.7	fgh
Wheat	TRZAX cv Caphorn	3028	11	h
Pea	PIBSX cv Spring	4340	26.9	i

(average of all cropping systems, regions, days & weather repetitions)

Colbach N, Gardarin A, Moreau D (submitted) The response of weed and crop species to shading. 2. Which parameters explain weed impacts on crop production? Eur J Agron

The crop traits that reduce yield loss

Crop spec	ies narameters	Stage	Yield
Crop spec		(BBCH)	loss
RGR	Relative growth rate	0	-0.33
LA0	Leaf area at emergence	0	-0.33
SLA0	Specific leaf area	1-3	-0.35
		5-7	
		8	
		9-10	
LBR0	Leaf biomass ratio	0-4	
HM0	Specific plant height	0-6	
b_HM	HM of light vs heavy plants	8-10	
HM_mu	Specific plant height	2-4	-0.32
		5-8	
WM0	Specific plant width	4-10	-0.36
b_WM	WM of light vs heavy plants	7-8	-0.32
WM_mu	Specific plant width	1	-0.34
RLH0	Median leaf height	4-5	
b_RLH	Unevenness of leaf distribution	5-6	0.32
		8-10	
RLH_mu	Median leaf height	0-3	
		9-10	

Colbach N, Gardarin A, Moreau D (submitted) Eur J Agron

The crop traits that increase potential yield

Crop species parameters		Stage	Yield	Potential yield	
		(BBCH)	loss	(MJ/ha)	
RGR	Relative growth rate	0	-0.33		
LA0	Leaf area at emergence	0	-0.33		
SLA0	Specific leaf area	1-3	-0.35		
٦	rade-off between traits	that		-0.32	
-	Reduce weed infestat	tion		-0.32	
LBR0	Increase vield notenti			0.56	
HM0					
b_HM	HM of light vs heavy plants	8-10		+0.35	
HM_mu	Specific plant height	2-4	-0.32		
		5-8		0.42	
WM0	Specific plant width	4-10	-0.36		
b_WM	WM of light vs heavy plants	7-8	-0.32		
WM_mu	Specific plant width	1	-0.34		
RLH0	Median leaf height	4-5		-0.38	
b_RLH	Unevenness of leaf distribution	5-6	0.32		
		8-10		0.48	
RLH_mu	Median leaf height	0-3		-0.45	
		9-10		-0.37	
Colbach N. Gar	darin A. Moreau D (submitted) Eur J Agron				

Conclusion

Traits and processes that drive competition for light

- Competition: occupy space early and fast rather than disturb or avoid neighbours
- Trade-off between competition and potential production

Practical implications

- Ecologists: traits of successful weed species
- Farmers: rules for choosing crops in rotation
- Seed breeders: guidelines for improving varieties

Limits

Model limited to crop:weed competition for light (but see Moreau)

Perspectives

- **Crop mixtures**
- Crop ideotypes that reconcile weed control and potential production

Thank you for your attention

Colbach N, Gardarin A, Moreau D (submitted) The response of weed and crop species to shading. 2. Which parameters explain weed impacts on crop production? Eur J Agron

Colbach N, Moreau D, Dugué F, Gardarin A, Strbik F, Munier-Jolain N (submitted) The response of weed and crop species to shading. 1. How to predict their morphology and plasticity from species traits and ecological indexes? Eur J Agron

Colbach N, Busset H, Roger-Estrade J, Caneill J (2014) Predictive modelling of weed seed movement in response to superficial tillage tools. Soil Tillage Res 138:1-8

Colbach N, Collard A, Guyot SHM, Mézière D, Munier-Jolain NM (2014) Assessing innovative sowing patterns for integrated weed management with a 3D crop:weed competition model. Eur J Agron 53:74-89. doi:http://dx.doi.org/10.1016/j.eja.2013.09.019

Gardarin A, Dürr C, Colbach N (2012) Modeling the dynamics and emergence of a multispecies weed seed bank with species traits. Ecol Modelling 240:123-138. doi:http://dx.doi.org/10.1016/j.ecolmodel.2012.05.004 Munier-Jolain NM, Collard A, Busset H, Guyot SHM, Colbach N (2014) Modelling the morphological plasticity of weeds in multi-specific canopies. Field Crops Research 155:90-98. doi:http://dx.doi.org/10.1016/j.fcr.2013.09.018 Munier-Jolain NM, Guyot SHM, Colbach N (2013) A 3D model for light interception in heterogeneous crop:weed canopies. Model structure and evaluation. Ecol Modelling 250:101-110.

doi:http://dx.doi.org/10.1016/j.ecolmodel.2012.10.023

