Reduced herbicide use does not increase crop yield loss if compensated by alternative measures

Nathalie Colbach & Stéphane Cordeau

Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon Nathalie.Colbach@inra.fr

Cosac

With few or no herbicides

Cosac

Material and methods: virtual experiments

Identify farmers' practices

272 cropping systems

7 regions

Surveys, Biovigilance, advisors, design...

3. Virtual experiments

Identify farmers' practices

272 cropping systems

7 regions

Surveys, Biovigilance, advisors, design...

region

Potos-Sharentes

8

oSAG

Simulation plan (30 years x 10 weather repetitions)

(Colbach & Cordeau 2018 EJA)

Introduction – Material & methods – Weed effects – Herbicide effects – Cropping systems – Conclusion

Weeds reduce crop production

Yield loss (%) = 100 (Yield without weeds – yield with weeds) Yield without weeds

(Colbach & Cordeau 2018 EJA)

Introduction – Material & methods – Weed effects – Herbicide effects – Cropping systems – Conclusion

Yield loss is linked to weed biomass

Annual scale

→ Linked to weed biomass (density)

Yield loss > 0 if weed biomass > 0.003 crop biomass

Biomass weeds/crops at flowering(g/g)

(Colbach & Cordeau 2018 EJA)

Yield loss is linked to weed biomass

Weeds do not depend on farmers' herbicide use intensity

TFI = treatment frequency index = number of herbicides at full dosage sprayed over whole field per year

\rightarrow No link with herbicide use intensity

(Colbach & Cordeau 2018 EJA)

Weeds do not depend on farmers' herbicide use intensity

 \rightarrow No link with herbicide use intensity Even though herbicides are efficient

same weed flora before the herbicide treatment

14

Farmers compensate reduced herbicide use with other measures

(Colbach & Cordeau 2018 EJA)

Herbicide use intensity depends on other practices

15

loSA(

When herbicides are deleted ...

→ Loss increases if herbicides taken out without compensation \rightarrow + visible at rotation vs annual scale

(Colbach & Cordeau 2018 EJA)

16

How to reduce crop yield loss?

How to reduce crop yield loss?

Conclusion

Methodology is important to detect weed & herbicide effects

Scale: rotation >> annual

- Weed state variable: biomass >> density
- Farmers' mental models: a technique is reasoned = f(other techniques)

Implications for weed management

- Weeds >> production (quantity and quality)
- Eliminating herbicides **7** weeds/yield loss if no compensation
- Weeds/Yield loss can be reduced with few or no herbicides

Limits

- Model limited to crop:weed competition for light (but see Moreau)
- Beneficial weed effects on crop auxiliaries were neglected

Perspectives

- Identify traits driving yield loss (see Colbach et al)
- Guidelines for farmers

Thank you for your attention

Colbach N, Cordeau S (2018) Reduced herbicide use does not increase crop yield loss if it is compensated by alternative preventive and curative measures. Eur J Agron 94:67-78. doi:https://doi.org/10.1016/j.eja.2017.12.008 Colbach N, Biju-Duval L, Gardarin A, Granger S, Guyot SHM, Mézière D, Munier-Jolain NM, Petit S (2014) The role of models for multicriteria evaluation and multiobjective design of cropping systems for managing weeds. Weed Res 54:541–555. doi:10.1111/wre.12112

Colbach N, Busset H, Roger-Estrade J, Caneill J (2014) Predictive modelling of weed seed movement in response to superficial tillage tools. Soil Tillage Res 138:1-8

Colbach N, Collard A, Guyot SHM, Mézière D, Munier-Jolain NM (2014) Assessing innovative sowing patterns for integrated weed management with a 3D crop:weed competition model. Eur J Agron 53:74-89. doi:http://dx.doi.org/10.1016/j.eja.2013.09.019

Gardarin A, Dürr C, Colbach N (2012) Modeling the dynamics and emergence of a multispecies weed seed bank with species traits. Ecol Modelling 240:123-138. doi:http://dx.doi.org/10.1016/j.ecolmodel.2012.05.004 Munier-Jolain NM, Collard A, Busset H, Guyot SHM, Colbach N (2014) Modelling the morphological plasticity of weeds in multi-specific canopies. Field Crops Research 155:90-98. doi:http://dx.doi.org/10.1016/j.fcr.2013.09.018 Munier-Jolain NM, Guyot SHM, Colbach N (2013) A 3D model for light interception in heterogeneous crop:weed canopies. Model structure and evaluation. Ecol Modelling 250:101-110. doi:http://dx.doi.org/10.1016/j.ecolmodel.2012.10.023

SCIENCE & IMPA